Abstract

Using a high speed IR camera for temperature sensor is a powerful new tool for thermal analysis in the cell scale biomaterials. In this study, we propose a new type of two-dimensional thermal analysis by means of a high speed IR camera with a microscopic lens, and applied it to the analysis of freezing of plant and animal cells. The latent heat on the freezing of super cooled onion epidermal cell was randomly observed by a unit cell size, one by one, under a cooling rate of 80degC/min with a spatial resolution of 7.5m. The freezing front of ice formation and the thermal diffusion behavior of generated latent heat were analyzed. As a result it was possible to determine simultaneously the intercellular/intracellular temperature distribution, the growing speed of freezing front in a single cell, and the thermal diffusion in the freezing process of living tissue. A new measuring system presented here will be significant in a transient process of biomaterials. A newly developed temperature wave methods for the measurement of in-plane thermal diffusivity was also applied to the cell systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.