Abstract

All kinds of physically possible material symmetry in two-dimensional space were investigated in a recent work of Q. -S. Zheng and J. P. Boehler. In this paper, we establish the complete and irreducible representations with respect to every kind of material symmetry for scalar-, vector-, and second-order tensor-valued functions in two-dimensional space of any finite number of vectors and second-order tensors. These representations allow general invariant forms of physical and constitutive laws of anisotropic materials to be developed in plane problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.