Abstract

We present a random-interface representation of the three-dimensional (3D) Ising model based on thermal fluctuations of a uniquely defined geometric spin cluster in the 3D model and its 2D cross section. Extensive simulations have been carried out to measure the global interfacial width as a function of temperature for different lattice sizes which is shown to signal the criticality of the model at T_{c} by forming a size-independent cusp in 3D, along with an emergent super-roughening at its 2D cross section. We find that the super-rough state is accompanied by an intrinsic anomalous scaling behavior in the local properties characterized by a set of geometric exponents which are the same as those for a pure 2D Ising model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call