Abstract
We investigate two-dimensional steady Euler–Poisson system which describes the motion of compressible self-gravitating flows. The unique existence and stability of subsonic flows in a duct of finite length are obtained when prescribing the entropy at the entrance and the pressure at the exit. After introducing the stream function, the Euler–Poisson system can be decomposed into several transport equations and a second-order nonlinear elliptic system. We discover an energy estimate for the associated elliptic system which is a key ingredient to prove the unique existence and stability of subsonic flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Models and Methods in Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.