Abstract

Laser–plasma interaction and hot electron generation play a crucial role in the context of inertial confinement fusion and in particular in the shock-ignition concept. Here we present a fully kinetic large-scale two-dimensional simulation studying laser–plasma interaction and hot electron generation in a relatively long and hot coronal plasma. The simulation shows saturation of the reflectivity of an intense spike pulse and absorption taking place close to a quarter critical density in particular, due to cavitation and stimulated Raman scattering. The signatures of steady two-plasmon decay are observed, but the hot electron number produced by this instability is low in comparison with the other two processes. The spectral and angular distribution of the back-scattered light is presented and the energy and angular characteristics of hot electrons due to individual absorption processes are studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call