Abstract

Gas heating in an atmospheric-pressure streamer discharge was analysed by a two-dimensional streamer discharge simulation model describing internal molecular energy transfer. Our two-dimensional streamer simulation model incorporates concepts from the fast gas heating mechanism proposed by Popov (2011 J. Phys. D: Appl. Phys. 44 285201) and our self-developed state-to-state vibrational kinetics. In dry air, gas heating occurs mainly from electron-impact dissociation reactions of O2 molecules and from quenching processes of electronically excited N2(B 3Πg, C 3Πu) molecules and O(1D) atoms. In humid air, rapid vibration-to-translation transitions of H2O and the exothermicity of the OH formation reactions additionally increase the gas temperature. It is shown that gas heating during the discharge pulse increases with humidity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call