Abstract
Gas heating in an atmospheric-pressure streamer discharge was analysed by a two-dimensional streamer discharge simulation model describing internal molecular energy transfer. Our two-dimensional streamer simulation model incorporates concepts from the fast gas heating mechanism proposed by Popov (2011 J. Phys. D: Appl. Phys. 44 285201) and our self-developed state-to-state vibrational kinetics. In dry air, gas heating occurs mainly from electron-impact dissociation reactions of O2 molecules and from quenching processes of electronically excited N2(B 3Πg, C 3Πu) molecules and O(1D) atoms. In humid air, rapid vibration-to-translation transitions of H2O and the exothermicity of the OH formation reactions additionally increase the gas temperature. It is shown that gas heating during the discharge pulse increases with humidity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.