Abstract

A solution to the two-dimensional scattering properties of a conducting elliptic cylinder coated with a confocal homogeneous anisotropic elliptical shell is obtained. The transmitted field of the anisotropic shell is expressed as an integral equation based on waves with different wave numbers and different directions of propagation. The waves in all directions are represented as the eigenfunction expansion in elliptic coordinates in terms of Mathieu functions. In order to solve the nonorthogonality properties of Mathieu functions, Galerkin's method is applied and a matrix is required for the computation of unknown expansion coefficients of the scattered and transmitted fields. Only the transverse magnetic (TM) polarization is presented, while the transverse electric (TE) polarization can be obtained in the same way. Some numerical results are presented in graphical forms. The result is in agreement with that available as expected when a coated elliptic cylinder degenerates to the coated circular one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.