Abstract
Exact integral equations are derived describing the source function and radiative flux in a two-dimensional, radially infinite cylindrical medium which scatters anisotropically. The problem is two-dimensional and cylindrical because of axisymmetric loading. Radially varying collimated radiation is incident normal to the upper surface while the lower boundary has no radiation incident upon it. The scattering phase function is represented by a spike in the forward direction plus a series of Legendre polynomials. The two-dimensional integral equations are reduced to a one-dimensional form by separating variables for the case when the radial variation of the incident radiation is a Bessel function. The one-dimensional form consists of a system of linear, singular Fredholm integral equations of second kind. Other more complex boundary conditions are shown to be solvable by a superposition of this basic Bessel function case. Diffusely incident radiation is also considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Quantitative Spectroscopy and Radiative Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.