Abstract

Measurements of the electrical resistivity, from 1.5 to 300 K, and of the low temperature magnetoresistance of highly conductive carbon nanotube (CNT) fibers, obtained by wet-spinning from liquid crystalline phase (LCP), are reported. At high temperature the results obtained on the raw CNT fibers show a typical metallic behavior and the resistivity levels without postdoping process were found to be only one order of magnitude higher than the best electrical conductors, with the specific conductivity (conductivity per unit weight) comparable to that of pure copper. At low temperature a logarithmic dependence of the resistivity and the temperature dependence of the negative magnetoresistance are consistent with a two-dimensional quantum charge transport---weak localization and Coulomb interaction---in the few-walled CNT fibers. The temperature dependence of the phase-breaking scattering rate has also been determined from magnetoresistance measurements. In the temperature range $Tl100\phantom{\rule{0.28em}{0ex}}\mathrm{K}$, electron-electron scattering is found to be the dominant source of dephasing in these highly conductive CNT fibers. While quantum effects demonstrate the two-dimensional aspect of conduction in the fibers, the fact that it was found that their resistance is mainly determined by the intrinsic resistivity of the CNTs---and not by intertube resistances---suggests that better practical conductors could be obtained by improving the quality of the CNTs and the fiber morphology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.