Abstract
It is well known that in the airborne radar, the location of the ground clutter spectrum in the angle-Doppler space is dependent mainly on the platform velocity and radar parameters. The authors propose a two-dimensional pulse-to-pulse canceller (TDPC) that can make full use of such prior information. The more detailed formulations of the ground clutter model and the signal model are given in a matrix-vector form. The least-squares-typical cost function associated with the filter coefficient matrix of the TDPC is established on the basis of the ground clutter model and the signal model. Like the classical displaced phase centre antenna (DPCA) processing, the proposed TDPC is also a spatial-temporal suppressor of ground clutter and can decrease the ground clutter signals, even though the DPCA condition is not satisfied. The proposed TDPC can also be used as an efficient pre-filtering tool before the conventional moving target indication (MTI) processing and the classical adaptive processing. Moreover, if only the TDPC plus the conventional MTI is used, it takes less computational time than the adaptive canceller. Experimental results show that the proposed TDPC has the satisfactory ground clutter suppression capability by using both simulated data and measured data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.