Abstract

We consider a two-dimensional liquid crystal spatial light modulator (SLM) for femtosecond pulse shaping. Novel shaping schemes enabling a drastic speed increase (about four orders of magnitude as compared with conventional liquid-crystal SLM-based pulse shapers) and complex (phase and amplitude) femtosecond pulse shaping are discussed and experimentally demonstrated. In the first case, while a horizontal resolution of 1920 addressable pixels provided superior fidelity for generating complex waveforms, scanning across the vertical dimension (1080 pixels) has been used to facilitate an update rate in excess of 100 kHz. In the second case, we use the pixel count redundancy in the vertical direction and encode a spectrally-dependent diffraction grating for modulation of both spectral phases and amplitudes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call