Abstract

Numerical simulation and comparative analysis of acoustic fields generated by two-dimensional phased arrays designed for ultrasonic surgery is conducted. The case of movement of a single focus by an array with the surface shaped as a part of a spherical shell with the curvature radius 120 mm is considered. The influence of the number of elements (varying from 64 to 1024), their diameter (from 2.5 to 10 mm), frequency (from 1 to 2 MHz), and the degree of sparseness of the elements at the array surface on the field characteristics is studied. The calculations are performed for arrays with elements positioned at the surface both regularly (in square, annular, or hexagonal patterns) and randomly. Criteria for the evaluation of the “quality” of intensity distributions in the field generated by an array in the case of movement of a single focus are suggested. Of all arrays studied, the best quality of distributions is obtained for an array containing 256 elements of diameter 5 mm randomly positioned at the array surface. The quality of the intensity distributions for arrays consisting of 255, 256, and 1024 elements positioned regularly (in square, annular, and hexagonal patterns) is inferior to the corresponding quality for arrays with randomly positioned elements. The irregularity in elements’ positioning considerably improves the distribution quality by suppressing the secondary intensity peaks in the field generated by the array; or, alternatively, it provides an opportunity to obtain the same distribution quality with a fraction of the number of elements in the array. The effects of the number and shape of elements, errors in phase setting, frequency modulation of signals, and non-uniform distribution of amplitudes over the array surface on the distribution quality are analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call