Abstract

AbstractUndoped layered oxynitrides have not been considered as promising H2‐evolution photocatalysts because of the low chemical stability of oxynitrides in aqueous solution. Here, we demonstrate the synthesis of a new layered perovskite oxynitride, K2LaTa2O6N, as an exceptional example of a water‐tolerant photocatalyst for H2 evolution under visible light. The material underwent in‐situ H+/K+ exchange in aqueous solution while keeping its visible‐light‐absorption capability. Protonated K2LaTa2O6N, modified with an Ir cocatalyst, exhibited excellent catalytic activity toward H2 evolution in the presence of I− as an electron donor and under visible light; the activity was six times higher than Pt/ZrO2/TaON, one of the best‐performing oxynitride photocatalysts for H2 evolution. Overall water splitting was also achieved using the Ir‐loaded, protonated K2LaTa2O6N in combination with Cs‐modified Pt/WO3 as an O2 evolution photocatalyst in the presence of an I3−/I− shuttle redox couple.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.