Abstract

Abstract The development of sulfur host materials with simultaneous suppressed shuttle effect, improved electrical/ionic conductivity and high sulfur loading is highly desired for lithium-sulfur batteries. Herein, we proposed that two-dimensional heterostructures made of layered covalent triazine framework on Ti3C2 MXene nanosheets (CTF/TNS) as a sulfur host show multiple-in-one advantages for lithium-sulfur batteries. The integrity of organic CTF with ordered pore structure and inorganic TNSs with high conductivity imparts the heterostructures three-dimensional spatial confinement for high sulfur loading and efficient electron/ion transport for improved reaction kinetics. In addition, lithiophilic N sites in CTF and sulfurophilic Ti sites in TNSs enable dual-site chemical anchoring of polysulfides to effectively suppress shuttle effect. With a high sulfur loading of 76 wt%, the S@CTF/TNS cathode shows high reversible capacity (1441 mA h g−1 at 0.2 C), outstanding cycling stability (up to 1000 cycles at 1 C with a 0.014 % capacity decay rate per cycle) and excellent rate capability. Notably, even with a high areal sulfur loading of 5.6 mg cm−2, a high capacity retention of 94 % is still obtained after 100 cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.