Abstract
Two-dimensional (2D) materials with nodal-loop band crossing have been attracting great research interest. However, it remains a challenge to find 2D nodal loops that are robust against spin-orbit coupling (SOC) and realized in magnetic states. Here, based on first-principles calculations and theoretical analysis, we predict that monolayer MnN is a 2D nodal-loop half metal with fully spin polarized nodal loops. We show that monolayer MnN has a ferromagnetic ground state with out-of-plane magnetization. Its band structure shows half metallicity with three low-energy bands belonging to the same spin channel. The crossing between these bands forms two concentric nodal loops centered around the $\Gamma$ point near the Fermi level. Remarkably, the nodal loops and their spin polarization are robust under SOC, due to the protection of a mirror symmetry. We construct an effective model to characterize the fully polarized emergent nodal-loop fermions. We also find that a uniaxial strain can induce a loop transformation from a localized single loop circling around $\Gamma$ to a pair of extended loops penetrating the Brillouin zone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.