Abstract
The advanced nodal method for solving the multi-group neutron transport equation in two-dimensional triangular geometry is developed. To apply the transverse integration procedure, an arbitrary triangular node is transformed into a regular triangular node using coordinate transformation. The angular distributions of intra-node neutron fluxes and its transverse-leakage are represented by the S N quadrature set. The spatial distributions of neutron flux and source in the regular triangle are given approximately by an orthogonal quadratic polynomial, and the spatial expansion of transverse-leakage is approximated by a second-order polynomial. To establish a stable and efficient iterative scheme, the improved nodal-equivalent finite difference algorithm is used. The results for several benchmark problems demonstrate the higher capability of the method to yield the accurate results in significantly smaller computing times than those required by the standard finite difference method and the finite element spherical-harmonics method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.