Abstract

The aromatic 1H NMR resonances of the insulin monomer are assigned at 500 MHz by comparative studies of chemically modified and genetically altered variants, including a mutant insulin (PheB25----Leu) associated with diabetes mellitus. The two histidines, three phenylalanines, and four tyrosines are observed to be in distinct local environments; their assignment provides sensitive markers for studies of tertiary structure, protein dynamics, and protein folding. The environments of the tyrosine residues have also been investigated by photochemically induced dynamic nuclear polarization (photo-CIDNP) and analyzed in relation to packing constraints in the crystal structures of insulin. Dimerization involving specific B-chain interactions is observed with increasing protein concentration and is shown to depend on temperature, pH, and solvent composition. In the monomer large variations are observed in the line widths of amide resonances, suggesting intermediate exchange among conformational substates; such substates may relate to conformational changes observed in different crystal states and proposed to occur in the hormone-receptor complex. Additional evidence for multiple conformations in solution is provided by comparative studies of an insulin analogue containing a peptide bond between residues B29 and A1 (mini-proinsulin). This analogue forms dimers and higher-order oligomers under conditions in which native insulin is monomeric, suggesting that the B29-A1 peptide bond stabilizes a conformational substate favorable for dimerization. Such stabilization is not observed in corresponding studies of native proinsulin, in which a 35-residue connecting peptide joins residues B30 and A1; this extended tether is presumably too flexible to constrain the conformation of the B-chain. The differences between proinsulin and mini-proinsulin suggest a structural mechanism for the observation that the fully reduced B29-A1 analogue folds more efficiently than proinsulin to form the correct pattern of disulfide bonds. These results are discussed in relation to molecular mechanics calculations of insulin based on the available crystal structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.