Abstract

A two-dimensional microarray of ten thousand (100 x 100) hepatocyte heterospheroids, underlaid with endothelial cells, was successfully constructed with 100 microm spacing in an active area of 20 x 20 mm on microfabricated glass substrates that were coated with poly(ethylene glycol) brushes. Cocultivation of hepatocytes with endothelial cells was essential to stabilize hepatocyte viability and liver-specific functions, allowing us to obtain hepatocyte spheroids with a diameter of 100 microm, functioning as a miniaturized liver to secret albumin for at least one month. The most important feature of this study is that these substrates are defined to provide an unprecedented control of substrate properties for modulating cell behavior, employing both surface engineering and synthetic polymer chemistry. The spheroid array constructed here is highly useful as a platform of tissue and cell-based biosensors and detects a wide variety of clinically, pharmacologically, and toxicologically active compounds through a cellular physiological response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.