Abstract

Two-dimensional transition-metal dichalcogenide alloys have attracted intense attention due to their tunable band gaps. In the present work, photoluminescence, Raman scattering, and electrical transport properties of monolayer and few-layer molybdenum tungsten diselenide alloys (Mo1-xWxSe2, 0 ≤ x ≤ 1) are systematically investigated. The strong photoluminescence emissions from Mo1-xWxSe2 monolayers indicate composition-tunable direct band gaps (from 1.56 to 1.65 eV), while weak and broad emissions from the bilayers indicate indirect band gaps. The first-order Raman modes are assigned by polarized Raman spectroscopy. Second-order Raman modes are assigned according to its frequencies. As composition changes in Mo1-xWxSe2 monolayers and few layers, the out-of-plane A1g mode showed one-mode behavior, while B2g(1) (only observed in few layers), in-plane E2g(1), and all observed second-order Raman modes showed two-mode behaviors. Electrical transport measurement revealed n-type semiconducting transport behavior with a high on/off ratio (>10(5)) for Mo1-xWxSe2 monolayers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.