Abstract

As one of the most important transition-metal dichalcogenides (TMDs) materials, molybdenum disulfide (MoS2) has gained extensive attention for its marvelous optoelectronic properties. In this study, nanocomposites of two-dimensional (2D) molybdenum disulfide (MoS2) with plasmonic noble metal nanoparticles were synthesized by a one-step green process. Under irradiation, 2D MoS2 in the nanocomposites absorbed photons and generated carriers in a wide spectrum. Then MoS2 coupled to gold nanoparticles and produced the enhanced electromagnetic field in the nanosturctures, leading to outstanding optical properties. In virtue of bio-compatibilities of the particles, the nanocomposites were chemically modified with specific peptides to construct an optical biosensor for explosive detection. When exposed to 2,4,6-trinitrotoluene (TNT), the biosensor showed significant absorption peak changes in visible spectra with a concentration-dependent behavior. The biosensor could detect TNT at the concentration as low as 2 × 10−7 M. For selectivity, the biosensor could differentiate TNT from other nitroaromatic explosives that have extremely similar structures to TNT, such as 4-nitrotoluene (4-NT) and 2,6-dinitrotoluene (DNT). All the results suggested that the biosensor based on the nanocomposites of 2D MoS2 coupling to plasmonic nanoparticles exhibited remarkable optical performance, which provided a promising approach to design versatile biosensors to detect biochemical molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call