Abstract

The catalytically stabilized combustion (CST) of a lean (equivalence ratio Φ = 0.4) methane-air mixture was investigated numerically in a laminar channel flow configuration established between two platinum-coated parallel plates 50 mm long and 2 mm apart. A two-dimensional elliptic fluid mechanical model was used, which included elementary reactions for both gaseous and surface chemistry. Heat conduction in the solid plates and radiative heat transfer from the hot catalytic surfaces were accounted for in the model. Heterogeneous ignition occurs just downstream of the channel entrance, at a streamwise distance ( x) of 4 mm. Sensitivity analysis shows that key surface reactions influencing heterogeneous ignition are the adsorption of CH 4 and O 2 and the recombinative desorption of surface-bound O radicals; the adsorption or desorption of radicals other than O has no effect on the heterogeneous ignition location and the concentrations of major species around it. Homogeneous ignition takes place at x = 41 mm. Sensitivity analysis shows that key surface reactions controlling homogeneous ignition are the adsorption/desorption of the OH radical and the adsorption/desorption of H 2O, the latter due to its direct influence on the OH production path. In addition, the slope of the OH lateral wall gradient changes from negative (net-desorptive) to positive (net-adsorptive) well before homogeneous ignition ( x = 30 mm), thus exemplifying the importance of a detailed surface chemistry scheme in accurately predicting the homogeneous ignition location. The effect of product formation on homogeneous ignition was studied by varying the third body efficiency of H 2O. Product formation promotes homogeneous ignition due to a shift in the relative importance of the reactions H + O 2 + M → HO 2 + M and HCO + M → CO + H + M.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.