Abstract
A series of two-dimensional radiation magnetohydrodynamic calculations are presented of a Z-pinch implosion using a plasma flow switch. Results from a recent experiment using the high explosive driven generator Procyon, which delivered 16.5 MA to a plasma flow switch and switched about 15 MA into a static load, are used to study the implosion of a 29 mg load foil [J. H. Goforth et al., ‘‘Review of the Procyon Explosive Pulsed Power System,’’ in Ninth IEEE Pulsed Power Conference, June 1993, Albuquerque, edited by K. R. Prestwich and W. L. Baker (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1993), p. 36]. The interaction of the switch with the load plasma and the effects of background plasma on the total radiation output is examined. Models which assume ideal switching are also included. Also included are the effects of perturbations in the load plasma which may be associated with initial vaporization of the load foil. If the background plasma density in the switch region and in the load region does not affect the dynamics, the pinch is predicted to produce a total radiation output of about 4 MJ. Including perturbations of the load plasma associated with switching and assuming a background plasma density after switching in excess of 10−7 g/cm3 results in a total output from the pinch of about 0.6 MJ.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.