Abstract

Two-dimensional (2D) depth-averaged hydrodynamic model was applied to simulate flow field around a circular pier in clear water. A correction factor was included in the friction term to take account of the effect of streamline curvature due to flow separation and vortex shedding. In this study, 2D model simulates not only the vortex shedding in the turbulence wake but also bed shear stress distribution. The simulated bed shear stress contours were close to experimental measurements and three-dimensional (3D) modeling results. Since 2D model is much simpler and requires significantly less computational time than three-dimensional model, these results demonstrated that an improved 2D model is a capable tool of simulating bed shear stress distribution around bridge piers. Research in enhancing and applying 2D model to simulating the initiation and development of local scour is still a challenging topic for hydraulic engineers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.