Abstract

The most important topics in the world today are environmental and resource issues. The development of green and clean energy is still one of the great challenges of social sustainable development. Two-dimensional(2D) metal-organic frameworks(MOFs) and derivatives have exceptional potential as high-efficiency electrocatalysts for clean energy technologies. This review summarizes various synthesis strategies and applications of 2D MOFs and derivatives in electrocatalysis. Firstly, we will outline the advantages and uniqueness of 2D MOFs and derivatives, as well as their applicable areas. Secondly, the synthetic strategies of 2D MOFs and derivatives are briefly classified. Each category is summarized and we list classic representative fabrication methods, including specific fabrication methods and mechanisms, corresponding structural characteristics, and insights into the advantages and limitations of the synthesis method. Thirdly, we separately classify and summarize the application of 2D MOFs and derivatives in electrocatalysis, including electrocatalytic water splitting, oxygen reduction reaction(ORR), CO2 reduction reaction(CO2RR), and other electrocatalytic applications. Finally, the development prospects and existing challenges to 2D MOFs and derivatives are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.