Abstract

A two-dimensional mathematical model has been developed for characterizing and predicting the dynamic performance of an air-cathode MFC with graphite fiber brush used as anode. The charge transfer kinetics are coupled to the mass balance at both electrodes considering the brush anode as a porous matrix. The model has been used to study the effect of design (electrode spacing and anode size) as well as operational (substrate concentration) parameters on the MFC performance. Two-dimensional dynamic simulation allows visual representation of the local overpotential, current density and reaction rates in the brush anode and helps in understanding how these factors impact the overall MFC performance. The numerical results show that while decreasing electrode spacing and increasing initial substrate concentration both have a positive influence on power density of the MFC, reducing anode size does not affect MFC performance till almost 60 % brush material has been removed. The proposed mathematical model can help guide experimental/pilot/industrial scale protocols for optimal performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.