Abstract

This article reports, for the first time, two-dimensional magnetohydrodynamic liner-on-plasma simulations for the compression phase of a magnetized target fusion (MTF) system with an inverse Z-pinch target. These simulations evolve the complete liner-plasma system along with the driving pulsed-power source. First, it has been demonstrated that closely coupled liner-on-plasma simulations produce results that are significantly different from loosely coupled simulations that have been reported in the literature. Second, it has been found that an initially stable plasma, satisfying the Kadomtsev criteria, and with a small initial pressure perturbation in the axial direction, remains stable all through the compression phase, even though there are large changes in the pressure and magnetic field levels. Third, a plasma that violates the Kadomtsev criteria, even by a small amount, turns out to be unstable, as predicted by theory. In practical terms, this means that it is preferable to stay well away from the stability limit, even at the cost of some reduction of initial plasma pressure. Fourth, even during the burn phase, when there is a large and rapid increase in plasma pressure due to fusion energy deposition, an initially stable plasma generally tends to remain stable, and even improves its stability margin. This observation shows that the inverse Z pinch is fairly benign as a MTF target, as an initially stable plasma remains stable during both the compression and burn phases. Fifth, certain unusual features are observed in the temperature profile—these depend upon the time scale for implosion. This has implications for plasma-surface interactions at the liner and central conductor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.