Abstract

The paper presents a technique to invert two-dimensional (2D) full wavefields using simulated annealing and a finite-difference solution of the 2D elastic wave equation in the time-distance domain. The algorithm generates all possible wave types (body waves, surface waves, etc.) to simulate complex seismic wavefields and for comparison with observed data. Model runs with both synthetic and actual experimental data sets illustrate the capability of the inversion technique. The results from synthetic data demonstrate the potential of characterizing both low- and high-velocity layers in laterally inhomogeneous profiles, and the inversion results from actual data are consistent with the crosshole, standard penetration test N-value, and material log results. Based on the cases presented, the coupling of global optimization with full waveforms is computationally practical; the results presented herein required less than 1 day of computer time on a standard laptop computer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call