Abstract

It is difficult to determine the stability of linear systems with interval delays (LID systems) because the roots of the characteristic polynomials of the systems are continuous and vary in a complex plane with the delay. To solve the problem, this paper develops a stability test of LID systems by resorting to 2-D hybrid polynomials and 2-D Hurwitz-Schur stability. Comparing with the existing test approaches for LID systems, the proposed 2-D Hurwitz-Schur stability test is easy to apply, and can obtain closed form constraint conditions for system parameters. This paper proposes some theorems as sufficient conditions for the stability of LID systems, and also reveals that recent results about the stability test of linear systems with any delays (LAD systems) are not suitable for LID systems because they are very conservative for the stability of LID systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.