Abstract

The Hubbard model on a square lattice in the ground state is investigated. Various aspects of Mott transition at half-filling are clarified from the quantum Monte Carlo study. Critical exponents of the transition for charge and spin correlations are estimated. For the doping concentration δ, the charge susceptibility is proportional to δ -1 indicating the divergence of charge mass for δ→0, while the spin susceptibility is always finite and not singular near δ=0. Several theoretical consequences of the above results are discussed. Incommensurate peak amplitude of spin correlation scales as (δ-δ c ) -1 with δ c <0.01 in disagreement with RPA results ln (δ-δ c ). The antiferromagnetic order at the half-filling also shows strong correlation character and is not sensitive to the shape of the fermi surface, while the incommensurate peak observed away from the half-filling is sensitively suppressed by the loss of partial nesting consistently with the weak coupling picture. Comparisons with experimental indicatio...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.