Abstract

Two-dimensional gyrokinetics is a simple paradigm for the study of kinetic magnetised plasma turbulence. In this paper, we present a comprehensive theoretical framework for this turbulence. We study both the inverse and direct cascades (the ‘dual cascade’), driven by a homogeneous and isotropic random forcing. The key characteristic length of gyrokinetics, the Larmor radius, divides scales into two physically distinct ranges. For scales larger than the Larmor radius, we derive the familiar Charney–Hasegawa–Mima equation from the gyrokinetic system, and explain its relationship to gyrokinetics. At scales smaller than the Larmor radius, a dual cascade occurs in phase space (two dimensions in position space plus one dimension in velocity space) via a nonlinear phase-mixing process. We show that at these sub-Larmor scales, the turbulence is self-similar and exhibits power-law spectra in position and velocity space. We propose a Hankel-transform formalism to characterise velocity-space spectra. We derive the exact relations for third-order structure functions, analogous to Kolmogorov's four-fifths and Yaglom's four-thirds laws and valid at both long and short wavelengths. We show how the general gyrokinetic invariants are related to the particular invariants that control the dual cascade in the long- and short-wavelength limits. We describe the full range of cascades from the fluid to the fully kinetic range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.