Abstract

The river health evaluation is typically complex non-linear system with characteristics of fuzziness and randomness. However, conventional gray clustering method has difficult to effectively describe fuzzy and random information simultaneously. For this purpose, the cloud model and fuzzy entropy theory are introduced to establish 2D gray cloud clustering-fuzzy entropy comprehensive evaluation model. Different with health level models, it reflects river health situation from aspects of health level and corresponding water body complexity simultaneously. The health level is obtained by gray cloud whitened weight function (first sub-system) and fuzzy entropy represents complexity and fuzziness of river health situation (second sub-system). Moreover, multi-level river health evaluation indicator system is constructed with dividing indicators into common and distinct sections according to differences on river characteristics. Meanwhile, indicator weights are determined by renewed combined weighting method based on minimum deviation principle. Finally, we conduct health evaluation work for rivers in the Taihu basin. The evaluation health levels and fuzzy entropy for river A–G are H3 (0.4888, relatively significant); H2 (0.5476, relatively fuzzy); H2 (0.7526, fuzzy); H2 (0.4731, relatively significant); H2 (05138, relatively fuzzy); H3 (0.5822, relatively fuzzy), and H2 (0.4064, relatively significant), respectively. Results are consistent with current river health situation and more intuitive than compared models. Furthermore, evaluation results with four different weighting methods are compared to further demonstrate rationality of the weighting method and evaluation model. Hence, the model proposed is demonstrated to provide new insight for solving river health assessment problem effectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call