Abstract
Using first principles calculations, we investigated the possibility of selecting multiple toxic gases using one substrate material. Here, we explored the transport property of H2, N2, O2, CO, CO2, NO2, and NH3 gas molecules on two-dimensional graphitic carbon nitride (2D g-C4N3). The homonuclear molecule such as H2, N2, and O2 has very weak adsorption energy (equal to or less than 0.1 eV) and also CO2 has an adsorption energy of 0.23 eV. In the typical toxic gas molecule adsorption systems, we found an appreciable charge transfer. In CO and NH3 adsorption systems, the charge transfer of 0.397 and 0.418 electrons from the molecule to the substrate was found, while the NO2 molecule gained 0.124 electrons from the substrate. Due to this large amount of charge transfer, we obtained large adsorption energies of 4.57, 1.29, and 1.93 eV in CO, NO2, and NH3 systems. Moreover, through the I–V curve calculations, we found large difference in the current. The calculated current was 21, 13.11, and 16.16 μA for CO, NO2, and NH3 systems at the bias voltage of 0.5 V. Our results imply that the 2D g-C4N3 can be a superior substrate material for sensing of multiple toxic gases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.