Abstract
Geometrical shock dynamics (GSD) is a model capable of efficiently predicting the position, shape, and strength of a shock wave. Compared to the traditional Euler method that solves the inviscid Euler equations, GSD is a reduced-order model derived from the method of characteristics which results in a more computationally efficient approach since it only considers the motion of the shock front instead of the entire flow field. Here, a study of post-shock flow effects in two dimensions has been performed. These post-shock flow effects become increasingly important when modeling blast wave propagation over extended times or distances, i.e., a shock front that decays in speed and that has decaying properties behind it. A comparison between the first-order complete, fully complete and point-source GSD (PGSD) models reveals the importance of preserving an intact post-shock flow term, which is truncated by the original GSD model, in predicting blast motion. Lagrangian simulations were performed for the case of interaction between two cylindrical blast waves and the results were compared to prior experimental work. The results showed an agreement in attenuation of the maximum pressure at the Mach stem, but an overestimation of the Mach stem growth at its early stage was observed using PGSD. To address this issue, another model was developed that combines the PGSD model with shock–shock approximate theory (PGSDSS), but it excessively attenuates Mach stem evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.