Abstract

Scalable g-C3N4 nanosheet powder catalyst was prepared by pyrolysis of dicyandiamide and ammonium chloride followed by ultra-sonication and freeze-drying. Nanosheet composite that combines the g-C3N4 nanosheets and Ca2Nb2TaO10 nanosheets with various ratios were developed and applied as photocatalysts for solar hydrogen generation. Systematic studies reveal that the g-C3N4/Ca2Nb2TaO10 nanosheet composite with a mass ratio of 80:20 shows the best performance in photocatalytic H2 evolution under visible light-irradiation, which is more than 2.8 times out-performing bare g-C3N4 bulk. The resulting nanosheets possess a high surface area of 96m2/g, which provides abundance active sites for the photocatalytic activity. More importantly, the g-C3N4/Ca2Nb2TaO10 nanosheet composite shows efficient charge transfer kinetics at its interface, as evident by the photoluminescence measurement. The intimate interfacial connections and the synergistic effect between g-C3N4 nanosheets and Ca2Nb2TaO10 nanosheets with cascading electrons are efficient in suppressing charge recombination and improving photocatalytic H2 evolution performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.