Abstract
Let ( x( t), y( t)) ⊤ be a solution of a Fuchsian system of order two with three singular points. The vector space of functions of the form P( t) x( t)+ Q( t) y( t), where P, Q are real polynomials, has a natural filtration of vector spaces, according to the asymptotic behavior of the functions at infinity. We describe a two-parameter class of Fuchsian systems, for which the corresponding vector spaces obey the Chebyshev property (the maximal number of isolated zeros of each function is less than the dimension of the vector space). Up to now, only a few particular systems were known to possess such a non-oscillation property. It is remarkable that most of these systems are of the type studied in the present paper. We apply our results in estimating the number of limit cycles that appear after small polynomial perturbations of several quadratic or cubic Hamiltonian systems in the plane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.