Abstract

The lightning electromagnetic pulse creates observable modifications to the overlying D region ionosphere, exhibited optically as elves. Recent work, both experimental and theoretical, has shown that elves are accompanied by considerable electron density disturbances of up to a factor of 2 increase in local density. We investigate the possibility that these density disturbances are observed by subionospheric VLF transmitter signals as the so‐called early VLF events. We use a finite difference frequency domain model to simulate the VLF transmitter signal propagating subionospherically to a VLF receiver, under ambient conditions and through a disturbed region. We show that modeled electron density disturbances, consistent with optical observations of elves, yield small but detectable perturbations to the VLF transmitter signal and may explain at least some observed early VLF events. We further show that sequences of in‐cloud lightning pulses, as in spider lightning, may yield considerably higher density disturbances and similarly more prominent VLF transmitter perturbations. In this way, the model herein supports previously reported correlations between sferic bursts and early VLF events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.