Abstract

In this paper, finite element approach using two-dimensional unsteady state problem has been developed to study radial and angular calcium diffusion problem in neurons. Calcium is responsible messenger for transmitting information in communication process between neurons. The most important Ca 2+ binding proteins for the dynamics of Ca 2+ is itself buffer and other physiological parameters are located in Ca 2+ stores. In this study, the model incorporates the physiological parameters like diffusion coefficient, receptors, exogenous buffers etc. Appropriate boundary conditions have been framed in view of the physiological conditions. Computer simulations in MATLAB 7.11 are employed to investigate mathematical models of reaction–diffusion equation, the details of the implementation can heavily affect the numerical solutions and, thus, the outcome simulated on Core(TM) i3 CPU M 330 @ 2.13 GHz processing speed and 3 GB memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.