Abstract

Following the observation of long-lived coherences in the two-dimensional (2D) electronic spectra of the Fenna-Matthews-Olson (FMO) complex, many theoretical works suggest that coherences between excitons may play a role in the efficient energy transfer that occurs in photosynthetic antennae. This interpretation of the dynamics depends on the assignment of quantum beating signals to superpositions of excitons, which is complicated by the possibility of observing both electronic and vibrational coherences in 2D spectra. Here, we explore 2D spectra of bacteriochlorophyll a (BChla) in solution in an attempt to isolate vibrational beating signals in the absence of excitonic signals to identify the origin of the quantum beats in 2D spectra of FMO. Even at high laser power, our BChla spectra show strong beating only from the nonresonant response of the solvent. The beating signals that we can conclusively assign to vibrational modes of BChla are only slightly above the noise and at higher frequencies than those previously observed in spectra of FMO. Our results suggest that the beating observed in spectra of FMO is of a radically different character than the signals observed here and can therefore be attributed to electronic coherences or intermolecular degrees of freedom.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.