Abstract
This paper presents a two-dimensional electromagnetic model for a microwave (2.45 GHz) plasma reactor operated by an axial injection torch. The model solves Maxwell’s equations, adopting a harmonic time description and considering the collision dispersion features of the plasma. Perfect-conductor boundary conditions are satisfied at the reactor walls, and absorbing boundary conditions are used at the open end of the coaxial waveguide powering the system. Simulations yield the distribution of the electromagnetic fields and the average power absorbed by the system for a given spatial profile of the plasma density (tailored from previous experimental measurements), with maximum values in the range 1014−1015 cm−3. Model results reveal that the system exhibits features similar to those of an air-filled, one-end-shorted circular metal waveguide, supporting evanescent or oscillatory solutions for radial dimensions below or above a critical radius, respectively. Results also show that the fractional average power absorbed by the plasma is strongly influenced by the system dimensions, which play a major role in defining the geometry pattern of the electromagnetic field distribution. Simulations are used to provide general guidelines for device optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.