Abstract
Metal-organic frameworks (MOFs) have emerged as attractive chemical sensing materials due to their exceptionally high porosity and chemical diversity. Nevertheless, the utilization of MOFs in chemiresistive type sensors has been hindered by their inherent limitation in electrical conductivity. The recent emergence of two-dimensional conductive MOFs (2D c-MOFs) has addressed this limitation by offering enhanced electrical conductivity, while still retaining the advantageous properties of MOFs. In particular, c-MOFs have shown promising advantages for the fabrication of sensors capable of operating at room temperature. Thus, active research on gas sensors utilizing c-MOFs is currently underway, focusing on enhancing sensitivity and selectivity. To comprehend the potential of MOFs as chemiresistive sensors for future applications, it is crucial to understand not only the fundamental properties of conductive MOFs but also the state-of-the-art works that contribute to improving their performance. This comprehensive review delves into the distinctive characteristics of 2D c-MOFs as a new class of chemiresistors, providing in-depth insights into their unique sensing properties. Furthermore, we discuss the proposed sensing mechanisms associated with 2D c-MOFs and provide a concise summary of the strategies employed to enhance the sensing performance of 2D c-MOFs. These strategies encompass a range of approaches, including the design of metal nodes and linkers, morphology control, and the synergistic use of composite materials. In addition, the review thoroughly explores the prospects of 2D c-MOFs as chemiresistors and elucidates their remarkable potential for further advancements. The insights presented in this review shed light on future directions and offer valuable opportunities in the chemical sensing research field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.