Abstract
This paper studies the stress and displacement distributions of functionally graded beam with continuously varying thickness, which is simply supported at two ends. The Young’s modulus is graded through the thickness following the exponential-law and the Poisson’s ratio keeps constant. On the basis of two-dimensional elasticity theory, the general expressions for the displacements and stresses of the beam under static loads, which exactly satisfy the governing differential equations and the simply supported boundary conditions at two ends, are analytically derived out. The unknown coefficients in the solutions are approximately determined by using the Fourier sinusoidal series expansions to the boundary conditions on the upper and lower surfaces of the beams. The effect of Young’s modulus varying rules on the displacements and stresses of functionally graded beams is investigated in detail. The two-dimensional elasticity solution obtained can be used to assess the validity of various approximate solutions and numerical methods for the aforementioned functionally graded beams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.