Abstract

The sensitivity to initial conditions and relaxation dynamics of two-dimensional maps are analyzed at the edge of chaos, along the lines of nonextensive statistical mechanics. We verify the dual nature of the entropic index for the Henon map, one (qsen<1) related to its sensitivity to initial condition properties, and the other, graining-dependent (qrel(W)>1), related to its relaxation dynamics towards its stationary state attractor. We also corroborate a scaling law between these two indices, previously found for z-logistic maps. Finally, we perform a preliminary analysis of a linearized version of the Henon map (the smoothed Lozi map). We find that the sensitivity properties of all these z-logistic, Henon and Lozi maps are the same, qsen=0.2445….

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.