Abstract

The development and design of anode materials with good stability, high capacity, low diffusion barrier and excellent cyclability is an important challenge for further improvement of the battery industry. In this context, a promising 2D anode material TiB2C2 with Dirac cone states is investigated through the first-principles prediction. We found this material to be thermodynamically, dynamically, and thermally stable, suggesting the possibility of its experimental synthesis. Considering its lightweight, planar structure and Dirac cone features, we systematically investigated the feasibility of the TiB2C2 monolayer as an anode material for Li-ion batteries (LIBs). Based on the adsorption energy of lithium on the monolayer surfaces, we determined the sites that can hold lithium ions with high adsorption energy. Moreover, TiB2C2 exhibits good ionic and electronic conductivity, a suitable voltage profile, and high structural stability upon the Li-loading process; it also shows 1.12% change in cell parameters. Importantly, a high storage capacity of up to 1075 mA h g-1 was found. All these criteria conclude the appealing electrochemical performance of the TiB2C2 monolayer as a promising anode material for LIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call