Abstract

Two-dimensional (2D) correlation analysis has been utilized to investigate NIR water bands perturbed by the presence of four different inorganic acids individually: HCl, H2SO4, H3PO4, and HNO3. The observed spectral variation in the 9000–7700cm−1 range was mainly due to interaction of dissociated H3O+ and corresponding anions with the vibration of water in a hydrogen bonding network. 2D correlation analysis of NIR spectra acquired from sample solutions (concentration range: 0.2–1.0M) showed that individual acids differently influenced water vibration. In addition, unforeseen spectral variations under the water band that were difficult to identify with corresponding raw NIR spectra were clearly observed. Based on the asynchronous correlation analysis, three underlying individual variations occurred for HCl under the 8718cm−1 band. Only two asynchronous correlations were observed for H2SO4 and H3PO4. The 2D correlation features of HNO3 were distinctly different from those of the other three acids due to an additional spectral feature caused by direct absorption by NO3-. The dissimilar influence of the selected acids on water vibration was confirmed by NIR spectroscopy combined with 2D correlation analysis. Partial least squares (PLS) loadings from each case were compared to examine the difference in weights that were constructed to follow the corresponding concentration changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call