Abstract

The adsorption behavior of butyl xanthate on the surface of lead oxide was investigated using continuous online in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy technique and two dimensional (2D) correlation analysis. The adsorbed layer studied was prepared by coating α-PbO particles onto the surfaces of the ZnSe crystal. The appearance of spectral peaks at 1203 cm−1, 1033 cm−1 and their red shift indicated the formation and aggregation of xanthate at the surface of α-PbO. According to IR intensity changes after rinsing with deionized water and a NaOH solution, the adsorption was proved to be a chemisorption type. The competition between xanthate and OH− for the surfaces leads to desorption of xanthate at higher pH. The technique of 2D correlation ATR-FTIR spectroscopy was used to evaluate the changing order of spectral intensities in the adsorption process, and the results indicated that xanthate micelles were formed at the surfaces. The adsorption kinetics of butyl xanthate was found to be a pseudo-second-order reaction model and the adsorption capacity of butyl xanthate at α-PbO was as high as 281 mg g−1 after 150 min.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call