Abstract
The collision of a probe laser pulse with a relativistic ionization front is analyzed via two-dimensional ray-tracing theory and simulations. It is shown that collisions in higher dimensions lead to new regimes for the frequency upshift of the probe photons; the frequency upshift can be considerably higher for particular collision angles that maximize the interaction length with the ionization front gradient. Finite ionization fronts also lead to angle-dependent frequency upshifts, thus acting as diffraction gratings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical, nonlinear, and soft matter physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.