Abstract
Bidomain or monodomain modelling has been used widely to study various issues related to action potential propagation in cardiac tissue. In most of these previous studies, the finite difference method is used to solve the partial differential equations associated with the model. Though the finite difference approach has provided useful insight in many cases, adequate discretisation of cardiac tissue with realistic dimensions often requires a large number of nodes, making the numerical solution process difficult or impossible with available computer resources. Here, a Chebyshev pseudospectral method is presented that allows a significant reduction in the number of nodes required for a given solution accuracy. The new method is used to solve the governing nonlinear partial differential equation for the monodomain model representing a two-dimensional homogeneous sheet of cardiac tissue. The unknown transmembrane potential is expanded in terms of Chebyshev polynomial trial functions and the equation is enforced at the Gauss-Lobatto grid points. Spatial derivatives are obtained using the fast Fourier transform and the solution is advanced in time using an explicit technique. Numerical results indicate that the pseudospectral approach allows the number of nodes to be reduced by a factor of sixteen, while still maintaining the same error performance. This makes it possible to perform simulations with the same accuracy using about twelve times less CPU time and memory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.