Abstract

Electrochemical capacitors are deemed to be the most prospective energy storage devices in the field of alternative energy sources. Here, cadmium hydroxide (Cd(OH)2) nanosheets are hydrothermally synthesized and used as electrodes for supercapacitors. Physiochemical properties of the as-synthesized materials are examined using powder x-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy and energy-dispersive x-ray spectroscopy measurements. Electrochemical investigations reveal an excellent operating potential window of 1.5 V, with the specific capacitance of ∼ 71 F g−1 at a scan rate of 2 mV s−1. In addition, the Cd(OH)2 electrodes are complemented by good cyclic retention for 2000 cycles. Further, the analysis of the type of charge-storage mechanism reveals prominent contributions from the diffusion-controlled processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.