Abstract

In earlier work, we presented a one-dimensional cache-oblivious sparse matrix-vector (SpMV) multiplication scheme which has its roots in one-dimensional sparse matrix partitioning. Partitioning is often used in distributed-memory parallel computing for the SpMV multiplication, an important kernel in many applications. A logical extension is to move towards using a two-dimensional partitioning. In this paper, we present our research in this direction, extending the one-dimensional method for cache-oblivious SpMV multiplication to two dimensions, while still allowing only row and column permutations on the sparse input matrix. This extension requires a generalisation of the compressed row storage data structure to a block-based data structure, for which several variants are investigated. Experiments performed on three different architectures show further improvements of the two-dimensional method compared to the one-dimensional method, especially in those cases where the one-dimensional method already provided significant gains. The largest gain obtained by our new reordering is over a factor of 3 in SpMV speed, compared to the natural matrix ordering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call