Abstract

Two-dimensional Bragg grating (2DBG) lasers with two quarter-wave slip line defects have been designed and fabricated by electron-beam lithography and reactive ion etching. Unlike conventional two-dimensional photonic crystal defect lasers, which use a large refractive index perturbation to confine light in a plane, the 2DBG structures described here selectively control the longitudinal and transverse wave vector components using a weak index perturbation. Two line defects perpendicular to each other are introduced in the 2DBG to define the optical resonance condition in the longitudinal and transverse directions. In this article, we describe the lithography process used to pattern these devices. The 2DBG lasers were defined using polymethylmethacrylate resist exposed in a Leica Microsystems EBPG 5000+ electron-beam writer at 100kV. A proximity correction code was used to obtain a uniform pattern distribution over a large area, and a dosage matrix was used to optimize the laser design parameters. Measurements of electrically pumped 2DBG lasers showed modal selection in both the longitudinal and transverse directions due to proper design of the grating and defects, making them promising candidates for single-mode, high power, high efficiency, large-area lasers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.